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• The exam is scheduled to last 75 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  
• Please disable all wireless connections on your calculator(s) and computing system(s). 
• Please power down all cell phones. 
• No headphones are allowed. 
• All work should be performed on the midterm exam.  If more space is needed, then use 

the backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

 Problem Point Value Your score Topic 
Marciela 1 18  Continuous-Time Convolution 

Appoline (Pru) 2 18  Discrete-Time Convolution 
Abigail 3 20  Discrete-Time First-Order System 
“Lucky” 4 26  Discrete-Time Second-Order System 

Miss Flores 5 18  System Properties 
 Total 100   

 
 

  



Problem 2.1 Continuous-Time Convolution.  18 points.  
(a) Plot y(t) = h(t) * x(t) using the rectangular pulse signals below.  9 points.   

 

 

 

Convolution formula: 

Convolving two causal signals gives a causal result.  
Convolving two finite-length signals of lengths Lh and Lx gives result of length Lh + Lx . 

 
 

 

 
Convolution of two rectangular pulses of different lengths gives a trapezoid.  
 

(b) Plot y(t) = h(t) * x(t) using the signals below.  9 points 

 

 
 

 
 
 
We can use convolution properties to reuse the result from part (a). 
Here x(t) looks like the x(t) in part (a) plus the x(t) in part (a) delayed by 2s and negated. 
That is, x(t) = xa(t) - xa(t-2). 
h(t) * x(t) = h(t) * ( xa(t) - xa(t-2) ) = h(t) * xa(t) - h(t) * xa(t-2) = ya(t) - ya(t-2). 
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Application: Communicating bits in x(t) over an LTI model of a lowpass 
communication channel with impulse response h(t).  Each rectangular 
pulse of 2 seconds in duration in x(t) carries one bit: amplitude is +1 for a 
bit of value 1 and -1 for a bit of value 0.  If we sample y(t) at 2 seconds 
and threshold the value against 0, we can recover the first bit of value ‘1’. 



Problem 2.2 Discrete-Time Convolution.  18 points.  

(a) Plot y[n] = h[n] * x[n] where h[n] = δ[n] + δ[n-4] and x[n] = cos(π n / 4) u[n] such that u[n] 
is the unit step function.  Below, h[n] and x[n] are plotted for -1 ≤ n ≤ 12, but please keep in mind 
x[n] is a cosine over 0 ≤ n < ∞.  9 points. 

 
 
 

 

 
 
 
 
 

𝒚 𝒏 = 𝒉 𝒏 ∗ 𝒙 𝒏 = 𝒉 𝒎  𝒙 𝒏 −𝒎 = 𝒉 𝟎  𝒙 𝒏 + 𝒉 𝟒  𝒙 𝒏 − 𝟒
!

𝒎!!!

 

𝒚 𝒏 = 𝐜𝐨𝐬 𝝅
𝟒
𝒏 𝒖[𝒏] + 𝐜𝐨𝐬 𝝅

𝟒
𝒏 − 𝟒 𝒖[𝒏 − 𝟒] = 𝐜𝐨𝐬 𝝅

𝟒
𝒏 𝒖[𝒏] + 𝐜𝐨𝐬 𝝅

𝟒
𝒏 − 𝝅 𝒖[𝒏 − 𝟒] 

𝒚 𝒏 = 𝐜𝐨𝐬
𝝅
𝟒
𝒏 𝒖 𝒏 − 𝐜𝐨𝐬

𝝅
𝟒
𝒏 𝒖 𝒏 − 𝟒 = 𝜹 𝒏 +

𝟏
𝟐
𝜹 𝒏 − 𝟏 −

𝟏
𝟐
𝜹 𝒏 − 𝟑  

Convolution result is four samples in duration.  See the plot on right. 
Alternately, we can flip and slide h[n-m] about x[m] with respect 
to m to see that once we have slide h[n-m] so that its leading unit 
sample is four samples to the right of the origin, we’ll add x[0] and 
x[4] to get zero, x[1] and x[5] to get zero, and so forth. 

(b) Plot y[n] = h[n] * u[n] using the signals below. Here, h[n] = –δ[n] – 4 δ[n-1] – 4 δ[n-2] – δ[n-3]  
and is plotted below.  Also, u[n] is the unit step function and is plotted below. 9 points. 

 
 

 

𝒚 𝒏 = 𝒉 𝒏 ∗ 𝒖 𝒏 = 𝒉 𝒎  𝒖 𝒏 −𝒎
!

𝒎!!!

 

𝒚 𝒏 = −𝒖 𝒏 − 𝟒 𝒖 𝒏 − 𝟏 − 𝟒 𝒖 𝒏 − 𝟐 −  𝒖 𝒏 − 𝟑  

n 

x[n] h[n] 

n n 

n 

n y[n] 

y[n] 
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Problem 2.3.  Discrete-Time First-Order LTI IIR System.  20 points.  
Consider a causal discrete-time first-order linear time-invariant (LTI) system with input x[n] and 
output y[n] governed by the following input-output relationship 

y[n] – a y[n-1] = x[n] – b x[n-1]  

for real-valued constants a and b where |a| < 1.  Input and output signals are observed for n ≥ 0. 
(a) What are the initial conditions? What should their values be? Why? 2 points. 

We compute the first few output samples to reveal the initial conditions: 
y[0] = a y[-1] + x[0] – b x[-1]  
y[1] = a y[0] + x[1] – b x[0]  

Initial conditions are x[-1] and y[-1].  They must be 0 for LTI properties to hold.  That is, a 
system must be “at rest” as a necessary condition for LTI properties to hold.  

(b) Derive the transfer function in the z-domain including the region of convergence.  3 points. 
Take the z-transform of both sides of the difference equation:  

𝒀 𝒛 − 𝒂 𝒛!𝟏 𝒀 𝒛 = 𝑿 𝒛 − 𝒃 𝒛!𝟏 𝑿 𝒛  
𝟏− 𝒂 𝒛!𝟏  𝒀 𝒛 = 𝟏− 𝒃 𝒛!𝟏  𝑿 𝒛  

Divide both sides by 𝟏− 𝒂 𝒛!𝟏 and 𝑿 𝒛 : 

𝑯 𝒛 =
𝒀(𝒛)
𝑿(𝒛) =

𝟏− 𝒃 𝒛!𝟏

𝟏− 𝒂 𝒛!𝟏 =
𝒛− 𝒃 
𝒛− 𝒂  

The z-transform of 𝒂𝒏 𝒖[𝒏] is 𝟏
𝟏 !𝒂 𝒛!𝟏

 𝐟𝐨𝐫 𝒛 > 𝒂 . 

Region of convergence is 𝒛 > 𝒂  because system is causal (has a causal impulse response). 
(c) Give a formula for the frequency response.  3 points. 

Because |a| < 1, the region of convergence |z| > |a| includes the unit circle, which allows us to 
use the transfer function in the z-domain to obtain the frequency response: 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯 𝒛 𝒛!𝒆𝒋 𝝎 =
𝒆𝒋 𝝎 − 𝒃
𝒆𝒋 𝝎 − 𝒂

 

(d) Give values of a and b for a lowpass filter.  Both values of a and b should be close to 1 in absolute 
value.  Make sure the filter is bounded-input bounded-output stable.  Justify your choices.  6 points 
Need |a| < 1 for BIBO stability.  When pole a and zero b are separated in angle, the pole angle 
indicates passband center frequency and the zero angle indicates stopband center frequency: 

𝑯𝒇𝒓𝒆𝒒 𝝎 =
𝒆𝒋 𝝎 − 𝒃
𝒆𝒋 𝝎 − 𝒂

=
𝒆𝒋 𝝎 − 𝒃
𝒆𝒋 𝝎 − 𝒂

 

For a lowpass filter, the center frequency of the passband is at 0 rad/sample. Let pole 
a = 0.9.  The center frequency of the stopband is at π  rad/sample.  Let zero b = -1. 

(e) Give values of a and b for an allpass filter.  Both values of a and b should be close to 1 in absolute 
value. Make sure the filter is bounded-input bounded-output stable.  Justify your choices.  6 points 
Using the magnitude response formula in part (d) and Handout I All Pass Filters, the pole 
and zero have to be at the same angle and the zero radius has to be the inverse of the pole 
radius; i.e., b = 1/a since the pole a and zero b are real-valued.  Example: a = 0.8 and b = 1.25.  

Tune-Up #7 & #9 HW 7.1 & 7.2 

Lecture Slides 11-3 to 11-7 

SPFirst Sec. 6-1 to 6-6 & 8-2, 8-3 & 8-6 

HW 7.1 Filter S1 

HW 7.1 Filter S2 had pole at a = -9/10 and zero at b = -10/9 Handout I on All-Pass Filters 

Handout U on Time Invariance  

SPFirst Sec. 8-2.1 on page 199 



Midterm problem 2.3(d) worked out on a marker board 

  



Problem 2.4 Discrete-Time Second-Order LTI System.  26 points.  
The transfer function in the z-domain for a causal discrete-time second-order linear time-
invariant (LTI) system with zeros z0 and z1 and poles p0 and p1 is given by 

𝐻 𝑧 =
(𝑧 − 𝑧!)(𝑧 − 𝑧!)
(𝑧 − 𝑝!)(𝑧 − 𝑝!)

 

We can write the transfer function in negative powers of z as follows: 

𝐻 𝑧 =
(1− 𝑧!𝑧!!)(1− 𝑧!𝑧!!)
(1− 𝑝!𝑧!!)(1− 𝑝!𝑧!!)

=
1− 𝑧! + 𝑧! 𝑧!! + 𝑧!𝑧!𝑧!!

1− 𝑝! + 𝑝! 𝑧!! + 𝑝!𝑝!𝑧!!
=
1+ 𝑏!𝑧!! + 𝑏!𝑧!!

1− 𝑎!𝑧!! − 𝑎!𝑧!!
 

In the discrete-time domain, the input and output signals are observed for n ≥ 0. 

(a) What is the region of convergence for H(z)?  3 points. 

𝒛 > 𝐦𝐚𝐱 { |𝒑𝟎|, 𝒑𝟏 } because the system is causal.  The region of convergence is the set of 
all z values for which the z-transform is valid (converges).  The z-transform of 𝒑𝟎𝒏 𝒖[𝒏] is 

𝟏
𝟏 ! 𝒑𝟎 𝒛!𝟏

 𝐟𝐨𝐫 𝒛 >  𝒑𝟎 .  We can apply partial fractions decomposition assuming that p0 ≠ p1: 

𝑯 𝒛 =
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

=
𝑨𝟏

𝟏− 𝒑𝟎𝒛!𝟏
+

𝑨𝟐
𝟏− 𝒑𝟏𝒛!𝟏

 

The regions of convergence are 𝒛 > 𝒑𝟎  for the left term and 𝒛 > 𝒑𝟏  for the right term. 
A similar result occurs when p0 = p1. 

(b) Derive the difference equation that relates input x[n] and output y[n] in the discrete-time domain.  
6 points.  
From 𝑯 𝒛 = 𝒀(𝒛)

𝑿(𝒛)
= 𝟏!𝒃𝟏𝒛!𝟏!𝒃𝟐𝒛!𝟐

𝟏!𝒂𝟏𝒛!𝟏!𝒂𝟐𝒛!𝟐
 , we multiply both sides by 𝟏− 𝒂𝟏𝒛!𝟏 − 𝒂𝟐𝒛!𝟐 and 𝑿 𝒛 :  

𝟏− 𝒂𝟏𝒛!𝟏 − 𝒂𝟐𝒛!𝟐  𝒀 𝒛 = 𝟏+ 𝒃𝟏𝒛!𝟏 + 𝒃𝟐𝒛!𝟐  𝑿(𝒛).  Applying the inverse z-transform: 

𝒚 𝒏 − 𝒂𝟏 𝒚 𝒏− 𝟏 − 𝒂𝟐 𝒚 𝒏− 𝟐 = 𝒙 𝒏 + 𝒃𝟏 𝒙 𝒏− 𝟏 + 𝒃𝟐 𝒙 𝒏− 𝟐  𝐟𝐨𝐫 𝒏 ≥ 𝟎 

𝒚 𝒏 = 𝒂𝟏 𝒚 𝒏− 𝟏 + 𝒂𝟐 𝒚 𝒏− 𝟐 + 𝒙 𝒏 + 𝒃𝟏 𝒙 𝒏− 𝟏 + 𝒃𝟐 𝒙 𝒏− 𝟐  𝐟𝐨𝐫 𝒏 ≥ 𝟎 

(c) What are the initial conditions?  To what values should the initial conditions be set?  3 points. 
We compute the first few output samples to reveal the initial conditions: 

𝒚 𝟎 = 𝒂𝟏 𝒚 −𝟏 + 𝒂𝟐 𝒚 −𝟐 + 𝒙 𝟎 + 𝒃𝟏 𝒙 −𝟏 + 𝒃𝟐 𝒙 −𝟐  

𝒚 𝟏 = 𝒂𝟏 𝒚 𝟎 + 𝒂𝟐 𝒚 −𝟏 + 𝒙 𝟏 + 𝒃𝟏 𝒙 𝟎 + 𝒃𝟐 𝒙 −𝟏  

𝒚 𝟐 = 𝒂𝟏 𝒚 𝟏 + 𝒂𝟐 𝒚 𝟎 + 𝒙 𝟐 + 𝒃𝟏 𝒙 𝟏 + 𝒃𝟐 𝒙 𝟎  
Initial conditions are x[-1], x[-2], y[-1], y[-2].  They must be 0 for LTI properties to hold.  
That is, a system must be “at rest” as a necessary condition for LTI properties to hold. 
 

 
[Please see the next page for an answer for part (d).] 

  

Tune-Up #8 

Mini-Project #2 

HW 7.1 

Lecture Slides 11-8 to 11-11 

SPFirst Sec.6-1 to 6-6 & 8-4 to 8-9  

Handout U on Time Invariance  SPFirst Sec. 8-2.1 on page 199 



(d) Choose the values of the two poles and two zeros to design a bandpass filter to pass the fourth 
octave on the Western music scale and attenuate the other octaves as much as possible.  In the 
fourth octave, the lowest note is at 262 Hz, the highest note is at 494 Hz, and the center frequency 
is at 378 Hz.  Use a sampling rate of 8000 Hz. Your filter design must be bounded-input bounded-
output stable.  Please plot the poles and zeros on the pole-zero diagram below.   14 points. 
When the poles and zeros are separated in angle, the angle of each pole indicates the 
frequency of the passband and the angle of each zero indicates the frequency of the stopband. 
A bounded-input bounded-output filter must have its poles inside the unit circle.  That is, 
their radii must be less than 1. 
The center frequency of the passband for the filter is 

𝝎𝒑𝒂𝒔𝒔 = 𝟐𝝅
𝒇𝒑𝒂𝒔𝒔
𝒇𝒔

= 𝟐𝝅
𝟑𝟕𝟖 𝑯𝒛
𝟖𝟎𝟎𝟎 𝑯𝒛 = 𝟎.𝟐𝟗𝟔𝟗 𝐫𝐚𝐝/𝐬𝐚𝐦𝐩𝐥𝐞 

Pole locations using a radius of r = 0.9 to get the poles close to the unit circle.  There is a pole 
for positive frequencies and a pole for negative frequencies: 

𝒑𝟎 = 𝒓 𝒆𝒋 𝝎𝒑𝒂𝒔𝒔  𝐚𝐧𝐝 𝒑𝟏 = 𝒓 𝒆!𝒋 𝝎𝒑𝒂𝒔𝒔 

Place zeros on unit circle at discrete-time frequencies 0 and π  rad/sample, i.e. at z = exp(j 0) 
= 1 and z = exp(j π) = -1.  Humans cannot hear frequencies below 20 Hz, and placing a zero 
at 0 rad/sample will cause a sharper transition in the magnitude response at 262 Hz. 
  

Re(z) 

Im(z) 

X 

X 
O O 

Not required.  Magnitude response plotted in Matlab 
in linear units (see the last page for the code). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please see the last page for a comparison of FIR and 
IIR filter designs to pass the fourth octave on the 
Western music scale. 

Note:  A second-order IIR filter in problem 2.4 and the first-order IIR filter in 
problem 2.3 are building blocks to create higher-order filters.  A fourth-order IIR 
filter is a cascade of two second-order IIR filters.  A fifth-order IIR filter is a cascade 
of two second-order IIR filters and a first-order IIR filter.  And so forth. 



Problem 2.5.  System Properties.  18 points.  
Each of the following discrete-time systems has input x[n] and output y[n]. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and 
bounded-input bounded-output (BIBO) stable. 

You must either prove that the system property holds in the case of linearity, time-invariance, or 
BIBO stability, or provide a counter-example that the property does not hold.  Providing an 
answer without any justification will earn 0 points. 
Please note that x[n] and y[n] might be complex-valued. 

Part System 
Name 

System Formula Linear? Time-Invariant? BIBO stable? 

(a) Squaring 
System 

y[n] = x2[n] No Yes Yes 

(b) Real part 
 

y[n] = Re{ x[n] } No Yes Yes 

(c) Running 
Summation 

y[n] = y[n-1] + x[n] 
for n ≥ 0 

No, since initial 
condition is not 0 

No, since initial 
condition is not 0 

No 

For linearity, the properties of homogeneity and additivity must hold. 
Homogeneity: Input αx[n]. Output yscaled[n]. Does yscaled[n] = αy[n] for all constant α  values? 
Addivitiy: Input x1[n] + x2[n]. Output yadditive[n]. Does yadditive[n] = y1[n] + y2[n]? 

For time-invariance, input x[n-n0]. Output yshifted[n]. Does yshifted[n] = y[n-n0]? 
For BIBO stability, input x[n]. Is it true that | y[n] | < C < ∞ for all possible | x[n] | < B < ∞?  
(a) Squaring system:  y[n] = x2[n].  6 points. 

Homogeneity: yscaled[n] = (αx[n])2 = α2 x2[n] = α  y[n] = α  x2[n] for all constant α  
values?  Only works for α  = 0 and α  = 1.  Not homogeneous.  Therefore, not linear. 

Time-Invariance: yshifted[n] = (x[n-n0])2 = x2[n-n0] = y[n-n0] = x2[n-n0].  Yes.  System output 
only depends on the current input value.  Such pointwise systems are time-invariant.  Yes. 

BIBO Stability:  | y[n] | = | x2[n] | = | x[n] |2 < B2.  Here, C = B2 , and B is finite.  Yes. 

(b) Real part: y[n] = Re{ x[n] }.   6 points. 
Homogeneity:  Write scalar α  = β  + j γ  and input signal x[n] = r[n] + j i[n]. The output is  

yscaled[n] = Re{ α  x[n] } = Re{ (β  + j γ)(r[n] + j i[n]) } =  β  r[n] – γ  i[n] 
y[n] = Re{ x[n] } = r[n] and α  y[n] = β  r[n] + j γ  r[n].   
Does yscaled[n] = α  y[n] for all constant α  values?  Only when x[n] is real-valued.  No. 

Time-Invariance: yshifted[n] = Re{ x[n-n0] } = y[n-n0] = Re{ x[n-n0] }? Yes. System output only 
depends on the current input value.  Such pointwise systems are time-invariant.  Yes. 

BIBO Stability:  | y[n] | = | Re{ x[n] } | ≤ | x[n] | < B.  Here, C = B, and B is finite.  Yes. 

(c) Running summation:  y[n] = y[n-1] + x[n] for n ≥ 0.   6 points. 
Linearity & Time-Invariance: Necessary condition is for the system to be at rest. System has 

one initial condition at y[-1] whose value is not specified.  Neither linear nor time-invariant. 
BIBO Stability: Let y[-1] = 0 and x[n] = u[n].  y[n] = (n+1) u[n] which is unbounded as n tends 

to infinity.  No.   (For x[n] = u[n], general solution is y[n] = (n+1) u[n] + y[-1] (n+1) u[n].)   
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% MATLAB Code 
 
% Code for problem 2.2(a) 
n = -1:12; 
h = zeros(1,14); 
h(2) = 1; 
h(6) = 1; 
stem(n, h); 
ylim( [-1.2 1.2] ); 
xlim( [-1.5 12.5] ); 
 
n = -1:12; 
x = cos(pi*n/4); 
x(1) = 0; 
stem(n, x); 
ylim( [-1.2 1.2] ); 
xlim( [-1.5 12.5] ); 
title( 'x[n]' ); 

 
y = zeros(1,14); 
n = 0:3; 
y(2:5) = cos(pi*n/4); 
n = -1:12; 
stem(n, y); 
ylim( [-1.2 1.2] ); 
xlim( [-1.5 12.5] ); 

 
% Code for problem 2.2(b) 
n = -1:12; 
y = -stepfun(n,0) - 4*stepfun(n-1,0) - 4*stepfun(n-2,0) - stepfun(n-3, 0); 
stem(n, y); 
ylim( [-10.2 1.2] ); 
xlim( [-1.5 12.5] ); 
 
% Code for problem 2.3 
figure; freqz( [1 1], [1 -0.9] );      % (d) lowpass filter 
figure; freqz( [1 -1.25], [1 -0.8] );  % (e) allpass filter 

 
% Code for problem 2.4(d) bandpass filter 
fpass = 378;       % center frequency of the 4th octave on the Western scale 
fs = 8000;         % sampling rate 
  
z0 = 1; 
z1 = -1; 
numer = [1 -(z0+z1) z0*z1]; 
  
r = 0.9; 
poleAngle = 2*pi*fpass/fs; 
p0 = r * exp(j*poleAngle); 
p1 = r * exp(-j*poleAngle); 
denom = [1 -(p0+p1) p0*p1]; 
  
gain = 0.095;    % normalizes maximum magnitude response to 1 in linear units 
  
[H, W] = freqz(gain*numer, denom); 
F = W*fs/(2*pi); 
plot(F, abs(H)); 



Problem 2.4(d).  Not required.   Design of a bandpass filter. 
We’ll take a different look at the design of a bandpass filter to pass the fourth octave on the 
Western scale than mini-project #2 took. 
In our case, we seek to design a bandpass filter that meets the following specification: 

-40 dB stopband attenuation (Astop1) from 0 to 247 Hz, 
-  1 dB to 0 dB passband response (Apass) from 262 to 494 Hz, and 
-40 dB stopband attenuation (Astop2) at and above 523 Hz. 

The sampling rate is 8000 Hz. 

We’ll use a MATLAB filter design interface called filter design and analysis tool (fdatool). 
FIR Filter Design: Type fdatool in MATLAB.   Select Bandpass for “Response Type”.  
Select “FIR Filter” for Design Method and then select “Equiripple” for the specific FIR 
Filter Design Method.  Then type in the above design specifications (except use 1.5 dB for 
Apass which is workaround for a limitation of the design method implementation) and hit 
“Design Filter”.  The resulting design is a 690th order FIR filter, which has 691 coefficients 
and requires 691 multiplications/additions to compute one output sample. 
IIR Filter Design: Type fdatool in MATLAB.   Select Bandpass for “Response Type”.  
Select “IIR Filter” for Design Method and then select “Elliptic” for the specific IIR Filter 
Design Method.  Then type in the above design specifications and hit “Design Filter”.  The 
resulting design is a 12th order IIR filter, which has 25 coefficients and requires 25 
multiplications/additions to compute one output sample. 

The IIR filter is 27 times more efficient in computation, and hence, IIR filters are more 
commonly used in digital audio applications than FIR filters. 
 
 

Magnitude Response for the 
IIR Bandpass Filter Design 

Magnitude Response for the 
FIR Bandpass Filter Design 


